

# Monday 14 January 2013 – Morning

## AS GCE MATHEMATICS

4721 Core Mathematics 1

#### **QUESTION PAPER**

Candidates answer on the Printed Answer Book.

#### OCR supplied materials:

- Printed Answer book 4721
- List of Formulae (MF1)

Other materials required: None Duration: 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

### INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

### INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.





1 (i) Solve the equation  $x^2 - 6x - 2 = 0$ , giving your answers in simplified surd form. [3]

(ii) Find the gradient of the curve  $y = x^2 - 6x - 2$  at the point where x = -5. [2]

2 Solve the equations

(i) 
$$3^n = 1$$
, [1]

(ii) 
$$t^{-3} = 64$$
, [2]

(iii) 
$$(8p^6)^{\frac{1}{3}} = 8.$$
 [3]

- 3 (i) Sketch the curve y = (1 + x)(2 x)(3 + x), giving the coordinates of all points of intersection with the axes. [3]
  - (ii) Describe the transformation that transforms the curve y = (1+x)(2-x)(3+x) to the curve y = (1-x)(2+x)(3-x). [2]
- 4 (i) Solve the simultaneous equations

$$y = 2x^2 - 3x - 5,$$
  $10x + 2y + 11 = 0.$  [5]

- (ii) What can you deduce from the answer to part (i) about the curve  $y = 2x^2 3x 5$  and the line 10x + 2y + 11 = 0? [1]
- 5 (i) Simplify  $(x+4)(5x-3) 3(x-2)^2$ . [3]
  - (ii) The coefficient of  $x^2$  in the expansion of

$$(x+3)(x+k)(2x-5)$$

is -3. Find the value of the constant *k*.

[3]

- 6 (i) The line joining the points (-2, 7) and (-4, p) has gradient 4. Find the value of p. [3]
  - (ii) The line segment joining the points (-2, 7) and (6, q) has mid-point (m, 5). Find m and q. [3]
  - (iii) The line segment joining the points (-2, 7) and (d, 3) has length  $2\sqrt{13}$ . Find the two possible values of d. [4]
- 7 Find  $\frac{dy}{dx}$  in each of the following cases:

(i) 
$$y = \frac{(3x)^2 \times x^4}{x}$$
, [3]

(ii)  $y = \sqrt[3]{x}$ , [3]

(iii) 
$$y = \frac{1}{2x^3}$$
. [2]

- 8 The quadratic equation  $kx^2 + (3k 1)x 4 = 0$  has no real roots. Find the set of possible values of k. [7]
- 9 A circle with centre C has equation  $x^2 + y^2 2x + 10y 19 = 0$ .
  - (i) Find the coordinates of *C* and the radius of the circle. [3]
  - (ii) Verify that the point (7, -2) lies on the circumference of the circle. [1]
  - (iii) Find the equation of the tangent to the circle at the point (7, -2), giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [5]
- 10 Find the coordinates of the points on the curve  $y = \frac{1}{3}x^3 + \frac{9}{x}$  at which the tangent is parallel to the line y = 8x + 3. [10]

| ( | Question |  | Answer                                                | Marks     | Guidance                                                                    |                                                                                                   |
|---|----------|--|-------------------------------------------------------|-----------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1 | (i)      |  | $\frac{6\pm\sqrt{(-6)^2-4\times1\times-2}}{2\times1}$ | M1        | Valid attempt to use quadratic formula                                      | No marks for attempting to factorise                                                              |
|   |          |  | $=\frac{6\pm\sqrt{44}}{2}$                            | A1        |                                                                             |                                                                                                   |
|   |          |  | $=3\pm\sqrt{11}$                                      | A1        | Both roots correct and simplified                                           |                                                                                                   |
|   |          |  | OR:<br>$(x-3)^2 - 9 - 2 = 0$                          |           |                                                                             |                                                                                                   |
|   |          |  | $x - 3 = \pm \sqrt{11}$                               | M1 A1     | Correct method to complete square                                           | Must get to $(x - 3)$ and $\pm$ stage for the M mark, constants combined correctly gets A1        |
|   |          |  | $x = 3 \pm \sqrt{11}$                                 | A1        | Rearranged to correct form cao                                              |                                                                                                   |
|   |          |  |                                                       | [3]       |                                                                             |                                                                                                   |
| 1 | (ii)     |  | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6$            | B1        |                                                                             |                                                                                                   |
|   |          |  | = -16                                                 | B1<br>[2] | www                                                                         |                                                                                                   |
| 2 | (i)      |  | n = 0                                                 | B1<br>[1] | Allow 3 <sup>°</sup>                                                        |                                                                                                   |
| 2 | (ii)     |  | $\frac{1}{t^3} = 64 \text{ (or } 4^3\text{)}$         | M1        | or $t^3 = \frac{1}{64}$ or $64t^3 = 1$ or $\left(\frac{1}{t}\right)^3 = 64$ | Allow embedded                                                                                    |
|   |          |  | $t = \frac{1}{4}$                                     | A1        | 4 <sup>-1</sup> is <b>A0</b> $t = \pm \frac{1}{4}$ is <b>A0</b>             | 4 <sup>-1</sup> www alone implies M1 A0                                                           |
|   |          |  | -                                                     | [2]       |                                                                             |                                                                                                   |
| 2 | (iii)    |  | $2p^2 = 8$                                            | M1        | or $8p^6 = 8^3$ . Allow $2p^{\frac{6}{3}} = 8$ for <b>M1</b>                | If not 512, evidence of $8 \times 8 \times 8$ needed.                                             |
|   |          |  | <i>p</i> = 2                                          | A1        | www                                                                         | <b>SC</b> Spotted <b>B1</b> for 2, <b>B1</b> for -2, <b>B1</b> for justifying exactly 2 solutions |
|   |          |  | or $p = -2$                                           | A1        | www                                                                         | <b>SC</b> $8p^2 = 8, p = \pm 1$ <b>B1</b>                                                         |
|   |          |  |                                                       | [3]       |                                                                             |                                                                                                   |

Mark Scheme

| Question |      | n | Answer                                | Marks     | Guidance                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                        |
|----------|------|---|---------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | (i)  |   | 20                                    | B1<br>B1  | -ve cubic with 3 distinct roots<br>(0, 6) labelled or indicated on <i>y</i> -axis –                                                                                                                                                                                             | Must not stop at x-axis. Condone<br>errors in curvature at the extremes<br>unless extra turning point(s)/root(s)<br>clearly implied.<br><b>Must have a curve for 2<sup>nd</sup> and 3<sup>rd</sup></b> |
|          |      |   |                                       | B1        | (-3, 0), (-1, 0) and (2, 0) labelled or<br>indicated on <i>x</i> -axis and no other <i>x</i> -<br>intercepts.                                                                                                                                                                   | <b>marks</b><br>Do not allow final B1 if shown as<br>repeated root(s)                                                                                                                                  |
| 3        | (ii) |   | Reflection                            | [J]<br>R1 | Not mirrored/flipped etc                                                                                                                                                                                                                                                        | Alt Stretch (scale) factor 1 <b>B1</b>                                                                                                                                                                 |
| 5        | (II) |   | in the y axis                         | B1<br>[2] | or $x = 0$ . No/through/along etc. Must be<br>"in". Cannot get 2 <sup>nd</sup> B1 without some<br>indication of a reflection e.g. flip etc.                                                                                                                                     | parallel to the x axis for B1<br>Must be a single transformation for<br>any marks                                                                                                                      |
|          |      |   |                                       |           | Do not <b>ISW</b> if contradictory statement                                                                                                                                                                                                                                    |                                                                                                                                                                                                        |
| 4        | (i)  |   | $2x^2 - 3x - 5 = \frac{-10x - 11}{2}$ | *M1       | Substitute for $x/y$ or attempt to get an equation in 1 variable only                                                                                                                                                                                                           | or $10x + 2(2x^2 - 3x - 5) + 11 = 0$                                                                                                                                                                   |
|          |      |   | $4x^2 + 4x + 1 = 0$                   | A1        | Obtain correct 3 term quadratic – could<br>be a multiple e.g. $2x^2 + 2x + 0.5 = 0$                                                                                                                                                                                             | If x is eliminated, expect<br>$k(8y^2 + 48y + 72) = 0$                                                                                                                                                 |
|          |      |   | (2x+1)(2x+1) = 0                      | DM1       | Correct method to solve resulting 3 term quadratic                                                                                                                                                                                                                              |                                                                                                                                                                                                        |
|          |      |   | $x = -\frac{1}{2}$                    | A1        |                                                                                                                                                                                                                                                                                 | SC If DM0 and $x = -\frac{1}{2}$ spotted                                                                                                                                                               |
|          |      |   | y = -3                                | A1        |                                                                                                                                                                                                                                                                                 | <b>B1</b> for <i>x</i> value, <b>B1</b> for y value                                                                                                                                                    |
|          |      |   |                                       | [5]       |                                                                                                                                                                                                                                                                                 | B1 justifying only one root                                                                                                                                                                            |
| 4        | (ii) |   | Line is a tangent to the curve        | B1V       | Must be consistent with their answers<br>to their quadratic in (i).<br>1 repeated root – indicates one point.<br>Accept tangent, meet at, intersect, touch<br>etc. but do not accept cross<br>2 roots – indicates meet at two points<br>0 roots – indicates do not meet. Do not | Follow through from their solution<br>to (i)                                                                                                                                                           |
| 1        |      |   |                                       | [1]       | accept "do not cross"                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |

4721

|   | Question |  | Answer                              | Marks    | Guidance                                                                                                                                                                       |                                                                           |  |
|---|----------|--|-------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| 5 | (i)      |  | $5x^2 + 17x - 12 - 3(x^2 - 4x + 4)$ | M1       | Attempt to expand both pairs of brackets                                                                                                                                       |                                                                           |  |
|   |          |  | $=2x^2+29x-24$                      | A1<br>A1 | $5x^2 + 17x - 12$ and $x^2 - 4x + 4$ soi; may<br>be unsimplified, no more than one<br>incorrect term, no "extra" terms at all.<br>No "invisible brackets"<br>$2x^2 + 29x - 24$ | <b>ISW</b> if they then put expression equal to zero and go on to "solve" |  |
| 5 | (ii)     |  | $-5x^2 + 2kx^2 + 6x^2$              | M1       | Correct method to multiply out 3                                                                                                                                               | No more than 8 terms, but ignore sign                                     |  |
|   |          |  |                                     |          | brackets or correctly identify all $x^2$ terms                                                                                                                                 | errors/accuracy of non $x^2$ terms                                        |  |
|   |          |  |                                     | Al       | All $x^2$ terms correct, no extras                                                                                                                                             |                                                                           |  |
|   |          |  | k = -2                              | A1       |                                                                                                                                                                                |                                                                           |  |
|   |          |  |                                     | [3]      |                                                                                                                                                                                |                                                                           |  |

4721

| ( | Question |  | Answer                                                                                                        | Marks                         | Guidance                                                                                                                                                                                                                                                  |                                                                                                                                                                            |  |
|---|----------|--|---------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6 | (i)      |  | $\frac{p-7}{-4-2}$ or $\frac{7-p}{-2-4}$                                                                      | M1                            | uses $\frac{y_2 - y_1}{x_2 - x_1}$ (at least 3out of 4 correct)                                                                                                                                                                                           | Alternative method:<br>Equation of line through one of the<br>given points with gradient 4 M1<br>Substitutes other point into their<br>equation M1                         |  |
|   |          |  | $\frac{p-7}{-4-2} = 4$ or $\frac{7-p}{-2-4} = 4$                                                              | A1                            | Correct, unsimplified equation                                                                                                                                                                                                                            | Obtains $p = -1$ (Accept $y = -1$ )A1                                                                                                                                      |  |
|   |          |  | p = -1                                                                                                        | A1<br>[3]                     |                                                                                                                                                                                                                                                           | <b>Note:</b> Other "informal" methods can score full marks provided <b>www</b>                                                                                             |  |
| 6 | (ii)     |  | $\frac{-2+6}{2} = m,  \frac{7+q}{2} = 5$ $m = 2$ $q = 3$                                                      | M1<br>A1<br>A1<br>[3]         | Correct method (may be implied by one correct coordinate)                                                                                                                                                                                                 | Use the same marking principle for<br>candidates who add/subtract half the<br>difference to an end point or use<br>similar triangles or other valid<br>"informal" methods. |  |
| 6 | (iii)    |  | $\sqrt{(-2-d)^2 + (7-3)^2}$<br>$d^2 + 4d + 20 = 52$<br>$d^2 + 4d - 32 = 0$<br>(d+8)(d-4) = 0<br>d = -8  or  4 | *M1<br>B1<br>DM1<br>A1<br>[4] | Correct method to find line length/square<br>of line length using Pythagoras' theorem<br>(at least 3out of 4 correct)<br>$(2\sqrt{13})^2 = 52 \text{ or } 2\sqrt{13} = \sqrt{52}$<br>Correct method to solve 3 term<br>quadratic, must involve their "52" | <b>SC: B1</b> for each value of <i>d</i> found or<br>"spotted" from correct working<br><b>Note:</b> Other "informal" methods can<br>score full marks provided <b>www</b>   |  |

4721

|   | Question |  | Answer                                                         | Marks     | Guidance                                                                           |                                                                  |  |
|---|----------|--|----------------------------------------------------------------|-----------|------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| 7 | (i)      |  | $y = 9x^5$                                                     | M1        | Obtain $kx^5$                                                                      | If individual terms are differentiated                           |  |
|   |          |  |                                                                | A1        | Correct expression for $y (9x^5)$                                                  |                                                                  |  |
|   |          |  | dy $dy$ $dz$                                                   | B1 ft     | Follow through from their single $kx^n$ , $n \neq -$                               | $3x^2 + x^4$ is not a mismod M0 A ODO                            |  |
|   |          |  | $\frac{1}{dx} = 45x^{2}$                                       | [3]       | 0. Must be simplified.                                                             | $\frac{1}{x}$ is not a misread WOA0BU                            |  |
| 7 | (ii)     |  | $y = x^{\frac{1}{3}}$                                          | D1        | $3\sqrt{r} - r^{\frac{1}{3}}$                                                      |                                                                  |  |
|   |          |  | y - x                                                          | DI        | $\sqrt[n]{x - x}$                                                                  | 1                                                                |  |
|   |          |  |                                                                | B1        | $kx^{-\overline{3}}$                                                               | <b>SC</b> $\sqrt[3]{x} = x^{-\frac{1}{3}}$ differentiated to     |  |
|   |          |  | $dy = 1 - \frac{2}{3}$                                         |           | $1 \frac{2}{r^{-\frac{2}{3}}}$ Allow 0 2 (not finite)                              | $1 \frac{4}{\pi^{-\frac{4}{3}}}$                                 |  |
|   |          |  | $\frac{1}{dx} = \frac{1}{3}x^3$                                | BI<br>[3] | $\frac{-x}{3}$ Anow 0.5 (not mine)                                                 | $-\frac{1}{3}x$ BI                                               |  |
| 7 | (iii)    |  | 13                                                             |           |                                                                                    |                                                                  |  |
|   |          |  | $y = \frac{1}{2}x^{3}$                                         | M1        | $kx^{-4}$ seen                                                                     |                                                                  |  |
|   |          |  | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{\mathrm{r}^{-4}}$ | A1        |                                                                                    |                                                                  |  |
|   |          |  | $dx = 2^{x}$                                                   | [2]       |                                                                                    |                                                                  |  |
| 8 |          |  | $(3k-1)^2 - 4 \times k \times -4$                              | *MI       | Attempts $b^2 - 4ac$ or an equation or inequality involving $b^2$ and $4ac$ . Must | Must be working with the discriminant explicitly and not only as |  |
|   |          |  |                                                                |           | involve $k^2$ in first term (but no x                                              | part of the quadratic formula. Allow                             |  |
|   |          |  |                                                                |           | anywhere). If $b^2 - 4ac$ not stated,                                              | $\sqrt{b^2 - 4ac}$ for first M1 A1                               |  |
|   |          |  |                                                                |           | must be clear attempt.                                                             |                                                                  |  |
|   |          |  | $=9k^{2}+10k+1$                                                | A1        | Correct discriminant, simplified to 3                                              |                                                                  |  |
|   |          |  | $9k^2 + 10k + 1 < 0$                                           | M1        | terms<br>States discriminant < 0 or $b^2 < 4ac$                                    | Can be awarded at any stage Doesn't                              |  |
|   |          |  |                                                                | 1111      | States discriminant volor b vite.                                                  | need first M1. No square root here.                              |  |
|   |          |  | (9k+1)(k+1) < 0                                                | DM1       | Correct method to find roots of a three                                            |                                                                  |  |
|   |          |  | 1                                                              | A 1       | term quadratic                                                                     |                                                                  |  |
|   |          |  | $-1, -\frac{1}{9}$                                             | AI        | Both values of <i>k</i> correct                                                    |                                                                  |  |
|   |          |  | 2                                                              | M1        | Chooses "inside region" of inequality                                              | Allow correct region for their                                   |  |
|   |          |  | $-1 < k < -\frac{1}{9}$                                        |           |                                                                                    | inequality                                                       |  |
|   |          |  | ,                                                              | A1        | Allow $\kappa < -and \kappa > -1$ etc. must be $9$                                 | Do not allow " $k < -\frac{1}{2}$ or $k > -1$ ".                 |  |
|   |          |  |                                                                | [7]       | strict inequalities for A mark                                                     | 9                                                                |  |

4721

| ( | Question |  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | Guidance                                                                           |                                                               |  |
|---|----------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| 9 | (i)      |  | Centre $(1 - 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1    | Correct centre                                                                     |                                                               |  |
|   |          |  | $\frac{(x-1)^2}{(x-1)^2} + \frac{(y+5)^2}{(y+5)^2} - 19 - 1 - 25 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1    | Correct method to find $r^2$                                                       | $r^{2} = (\pm 5)^{2} + (\pm 1)^{2} + 19$ for the M mark       |  |
|   |          |  | $(x-1)^2 + (y+5)^2 = 45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                    |                                                               |  |
|   |          |  | Radius = $\sqrt{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1    | Correct radius. Do not allow if wrong                                              | A0 if $\pm \sqrt{45}$                                         |  |
| - | ()       |  | $(-7^2)$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)^2$ , $(-2)$ | [3]   | centre used in calculation of radius.                                              |                                                               |  |
| 9 | (11)     |  | $7^{2} + (-2)^{2} - 14 - 20 - 19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BI    | Substitution of coordinates into equation                                          | No follow through for this part as                            |  |
|   |          |  | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Of circle in any form of use of<br>Pythagoras' theorem to calculate the            | AG. Must be consistent – do not                               |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1]   | distance of $(7, -2)$ from C                                                       | allow finding the distance as $\sqrt{45}$ if                  |  |
|   | (***)    |  | 5 ( 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                    | no/wrong radius found in 9(1).                                |  |
| 9 | (111)    |  | gradient of radius = $\frac{-5 - (-2)}{1 - 7}$ or $\frac{-2 - (-5)}{7 - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MI    | uses $\frac{y_2 - y_1}{x_2 - x_1}$ with their C (3/4 correct)                      | Follow through from 9(1) until final mark.                    |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |                                                                                    |                                                               |  |
|   |          |  | $=\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1√   | Follow through from their C, allow                                                 | If $(-1,5)$ is used for C, then expect                        |  |
|   |          |  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | unsimplified single fraction e.g. $\frac{-3}{6}$                                   |                                                               |  |
|   |          |  | gradient of tangent $= -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1    | Follow through from their gradient, even                                           | Gradient of radius = $\frac{5-(-2)}{-2} = -\frac{7}{-2}$      |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | if M0 scored. Allow $\frac{-1}{\text{their fraction}}$ B1                          | -1-7 8                                                        |  |
|   |          |  | y+2=-2(x-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1    | correct equation of straight line through                                          | Gradient of tangent = $\frac{8}{\pi}$                         |  |
|   |          |  | 2 . 12 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 1   | (7, -2), any non-zero numerical gradient                                           | 1                                                             |  |
|   |          |  | 2x + y - 12 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AI    | be 3 term equation in correct form i.e. $k(2x + y - 12) = 0$ where k is an integer |                                                               |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | k(2x + y - 12) = 0 where k is an integer                                           | Alternative markscheme for implicit                           |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | cao                                                                                | differentiation.                                              |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [5]   |                                                                                    | M1 Attempt at implicit diff as                                |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                    | evidenced by $2y \frac{dy}{dx}$ term                          |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                    | $\mathbf{A1}  2x + 2y\frac{dy}{dx} - 2 + 10\frac{dy}{dx} = 0$ |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                    | A1 Substitution of $(7, -2)$ to obtain                        |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                    | gradient of tangent = $-2$                                    |  |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                    | Then M1 A1 as main scheme                                     |  |

Mark Scheme

| Question | Answer                                            | Marks      | Guidance                                                                                                   |                                                                                                    |  |
|----------|---------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| 10       | $\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 9x^{-2}$ | B1         | $x^2$ from differentiating first term                                                                      |                                                                                                    |  |
|          |                                                   | M1         | $kx^{-2}$                                                                                                  |                                                                                                    |  |
|          |                                                   | A1         | $-9x^{-2}$ (no + c)                                                                                        |                                                                                                    |  |
|          | Gradient of line = 8                              | B1         |                                                                                                            |                                                                                                    |  |
|          | $x^2 - 9x^{-2} = 8$                               | M1         | Equate their $\frac{dy}{dx}$ to 8 (or their gradient of line, if clear)                                    | <b>Note:</b> If equated to +/-1/8 then M0<br>but the next M1 and its<br>dependencies are available |  |
|          | $r^4 - 8r^2 - 9 - 0$                              |            |                                                                                                            |                                                                                                    |  |
|          | $k^2 - 8k - 9 = 0$                                | *M1        | Use a correct substitution to obtain a 3 term quadratic or factorise into 2 brackets each containing $x^2$ | If no substitution stated and<br>treated as a quadratic (e.g.<br>quadratic formula), no more marks |  |
|          | (k-9)(k+1) = 0                                    | DM1        | Correct method to solve 3 term quadratic – dependent on previous M1                                        | SC: If spotted after first five<br>marks-                                                          |  |
|          | k = 9 (don't need $k = -1$ )                      | A1         | No extras                                                                                                  | (-3, -12) <b>B1</b><br>Justifies exactly two solutions <b>B3</b>                                   |  |
|          | x = 3, -3                                         | DM1        | Attempt to find <i>x</i> by square rooting – accept one value                                              |                                                                                                    |  |
|          | y = 12, -12                                       | A1<br>[10] | No extras                                                                                                  |                                                                                                    |  |

More Additional Guidance for Q10

If curve equated to line and before differentiating:

First four marks B1 M1 A1 B1 available as main scheme
Then M0 for equating as this not been explicitly done
Allow the M1 for the substitution
DM1 for quadratic as main scheme (dependent on a correct substitution)
A0 for the 9 (as follows wrong working)
DM1 for square rooting (dependent on a correct substitution)
A0 for the co-ordinates (as follows wrong working). Max mark 7/10

#### Allocation of method mark for solving a quadratic

e.g. 
$$2x^2 - 5x - 18 = 0$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

| (2x+2)(x-9) = 0 | M1 | $2x^2$ and $-18$ obtained from expansion |
|-----------------|----|------------------------------------------|
| (2x+3)(x-4) = 0 | M1 | $2x^2$ and $-5x$ obtained from expansion |
| (2x-9)(x-2) = 0 | MO | only $2x^2$ term correct                 |

2) If the candidate attempts to solve by using the formula

a) If the formula is quoted incorrectly then M0.

b) If the formula is quoted correctly then one **sign** slip is permitted. Substituting the wrong numerical value for a or b or c scores **M0** 

$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times-18}}{2\times2}$$
 earns M1 (minus sign incorrect at start of formula)  

$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 earns M1 (18 for *c* instead of -18)  

$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
M0 (2 sign errors: initial sign and *c* incorrect)  

$$\frac{5\pm\sqrt{(-5)^2-4\times2\times-18}}{2\times-5}$$
M0 (2*b* on the denominator)

**Notes** – for equations such as  $2x^2 - 5x - 18 = 0$ , then  $b^2 = 5^2$  would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for *a* in both occurrences in the formula would be two sign errors and score **M0**.

c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving  $\pm$ ; we are looking for evidence that the candidate knows a quadratic has two solutions!



If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.